首页> 外文OA文献 >A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization
【2h】

A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization

机译:一种灵活高效的约束矩阵算法框架   和张量分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a general algorithmic framework for constrained matrix and tensorfactorization, which is widely used in signal processing and machine learning.The new framework is a hybrid between alternating optimization (AO) and thealternating direction method of multipliers (ADMM): each matrix factor isupdated in turn, using ADMM, hence the name AO-ADMM. This combination cannaturally accommodate a great variety of constraints on the factor matrices,and almost all possible loss measures for the fitting. Computation caching andwarm start strategies are used to ensure that each update is evaluatedefficiently, while the outer AO framework exploits recent developments in blockcoordinate descent (BCD)-type methods which help ensure that every limit pointis a stationary point, as well as faster and more robust convergence inpractice. Three special cases are studied in detail: non-negative matrix/tensorfactorization, constrained matrix/tensor completion, and dictionary learning.Extensive simulations and experiments with real data are used to showcase theeffectiveness and broad applicability of the proposed framework.
机译:我们提出了一个用于约束矩阵和张量分解的通用算法框架,该框架广泛用于信号处理和机器学习中。新框架是交替优化(AO)和乘数交替方向方法(ADMM)的混合体:每个矩阵因子在使用ADMM,因此名称为AO-ADMM。这种组合自然可以适应因子矩阵的各种约束,以及几乎所有可能的拟合损失度量。计算缓存和热启动策略用于确保有效地评估每个更新,而外部AO框架则利用了块坐标下降(BCD)类型方法的最新发展,这些方法有助于确保每个极限点都是固定点,并且更快,更可靠收敛实践。详细研究了三种特殊情况:非负矩阵/张量分解,约束矩阵/张量完成和字典学习。使用大量真实数据进行的模拟和实验证明了该框架的有效性和广泛的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号